- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Fagherazzi, Sergio (2)
-
Gourgue, Olivier (2)
-
Temmerman, Stijn (2)
-
Belliard, Jean-Philippe (1)
-
Belliard, Jean‐Philippe (1)
-
Bouma, Tjeerd J. (1)
-
Kleinhans, Maarten G (1)
-
Schwarz, Christian (1)
-
Vandenbruwaene, Wouter (1)
-
Vanlede, Joris (1)
-
Xu, Yiyang (1)
-
van Belzen, Jim (1)
-
van de Koppel, Johan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To save saltmarshes and their valuable ecosystem services from sea level rise, it is crucial to understand their natural ability to gain elevation by sediment accretion. In that context, a widely accepted paradigm is that dense vegetation favors sediment accretion and hence saltmarsh resilience to sea level rise. Here, however, we reveal how dense vegetation can inhibit sediment accretion on saltmarsh platforms. Using a process‐based modeling approach to simulate biogeomorphic development of typical saltmarsh landscapes, we identify two key mechanisms by which vegetation hinders sediment transport from tidal channels toward saltmarsh interiors. First, vegetation concentrates tidal flow and sediment transport inside channels, reducing sediment supply to platforms. Second, vegetation enhances sediment deposition near channels, limiting sediment availability for platform interiors. Our findings suggest that the resilience of saltmarshes to sea level rise may be more limited than previously thought.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Gourgue, Olivier; van Belzen, Jim; Schwarz, Christian; Vandenbruwaene, Wouter; Vanlede, Joris; Belliard, Jean-Philippe; Fagherazzi, Sergio; Bouma, Tjeerd J.; van de Koppel, Johan; Temmerman, Stijn (, Earth Surface Dynamics)Abstract. There is an increasing demand for the creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet restored tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystemdevelops, how resilient it is to sea level rise, and how this can be steered by restoration design are key questions that are typically challenging to assess due to the complex biogeomorphic feedback processes involved. In this paper, we apply a biogeomorphic model to a specific tidal-marsh restoration project planned by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport, and vegetation dynamics, accounting for relevant fine-scale flow–vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and in the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restoration design options can steer marsh resilience, as they affect the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to higher biogeomorphic diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal-marsh development towards sustainable restoration goals.more » « less
An official website of the United States government
